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Abstract

Producing semantic segmentation annotations requires
a large amount of human effort. It is often challenging
to use and combine publicly available datasets due to
disparities in their taxonomies. In this paper, we express
the problem of combining multiple heterogeneously labeled
datasets as a partial labels problem: We associate every
pixel with a set of candidate labels, only one of which
is the correct label. We propose to use the Minimum
Commitment loss, a simple, yet effective loss that does not
set any preferences among the compatible labels. We found
that our loss outperforms traditional methods such as
Cross-Entropy with uniform targets, or Multi-task learning.

1. Introduction

The semantic segmentation task, also known as per-pixel
classification, has seen significant progress in the past years
due to deep learning techniques [21]. However, training
high-capacity learning models such as deep Convolutional
Neural Networks (CNNs) requires a large amount of labeled
data. Producing such annotations for semantic segmenta-
tion is especially expensive in terms of human labor.

Therefore one may find it easier to combine multiple ex-
isting datasets to gather more training data. Due to the hier-
archical nature of the semantic segmentation task, datasets
often don’t share the same taxonomies and this often leads
to ambiguities that cannot be solved without a substantial
amount of annotation work. In the case where there is
no publicly available dataset with all the needed classes, it
can also be required to combine datasets with different tax-
onomies. An example of that is shown in figure 1. Each
original dataset taken separately wouldn’t have been suffi-
cient to be able to differentiate between the three classes.
Therefore, combining the two original datasets is needed.
We refer to the vegetation label as an ambiguous label since
it is the union of two labels that belong to the expected tax-
onomy.

Figure 1: This is an example of ambiguities. Instead of
manually annotating the bush class, we express the vegeta-
tion classes as sets of labels, i.e. {tree, bush} for the dataset
A, and {bush, grass} for the dataset B.

Our goal in this paper is to avoid any additional annota-
tion work when combining datasets that have different tax-
onomies. For that purpose, we express ambiguous annota-
tions as sets of candidate labels. Instead of associating every
pixel with a single label, we associate every pixel with a set
of candidate labels, only one of which is correct. This clas-
sification problem is usually referred to as partial labels or
multiple labels problem [10].

We propose to train a Convolutional Neural Network
using a Minimum Commitment Loss [7]. To our knowl-
edge, this is the first time this loss is used in the con-
text of deep learning. We first compare the proposed loss
against well studied losses such as Cross-Entropy or Binary
Cross-Entropy. We then demonstrate the effectiveness of
our method on Cityscapes [3] and BDD100k [20] datasets.
We also compare it to other paradigms such as Multi-task
learning and flat classification.
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2. Related Work
The Partial labels problems are parts of the larger class of

weakly-supervised learning problems. Weakly-supervised
learning can be viewed as half-way between supervised
learning (the exact labels are available) and unsupervised
learning (no labels are available). The formulation and dif-
ferences between the different learning settings are given
below.

• In partial labels learning (also called multiple labels
learning or ambiguous labels learning), each example
is supplied with a set of candidate labels. Only one
label among the candidate set is the correct label. Even
if initially it was called multiple labels learning [10],
it is now preferred to call it partial labels learning to
avoid confusion with multi-label learning.

• In supervised learning, each example is associated
with a single label. This can be viewed as a special
case of partial labels learning where the candidate set
contains only one label.

• In semi-supervised learning [22], some examples are
associated with a single label (as in supervised learn-
ing) and some example are associated with no labels
(as in unsupervised learning) This also can be formu-
lated as a partial labels learning problem where the
candidate set for the labeled examples contains one la-
bel and the candidate set for unlabeled examples con-
tains all the labels.

• In multi-label learning, every example can be associ-
ated with multiple labels, all of them being correct.

Most of the methods for learning from ambiguously la-
beled data involve two types of approaches. The first is
called the identification-based methods where the label con-
fidence and model parameters are iteratively and alterna-
tively updated. Several papers, [10, 13, 15, 12] have used
this approach to estimate the model parameters and the true
label, for ambiguously labeled data, mostly with the help
of the expectation-maximization (EM) algorithm [5]. For
example, [10] applies the EM algorithm to find which label
among the given set is more appropriate. Starting with the
assumption that every class label within the set is equally
likely, they train a conditional model p(y|x, θ). Then, with
the help of this conditional model, they estimate the label
distribution p̂(y|xi) for each data point. With these label
distributions, they refit the conditional model p(y|x, θ) and
so on.

On the other hand, the second approach called the
average-based methods treat all the candidate labels
equally, assuming they contribute equally to the trained
classifier. These methods require the use of different loss

functions to estimate the class probabilities given the par-
tially labeled data [4, 9]. [2] explains the general conditions
under which the probability of the true class given the obser-
vation can be estimated from training data with ambiguous
class labels. To do so, they conceptualize losses as func-
tions of ambiguous labels, and show that the capability to
estimate class probabilities using a given loss depends on
the relation of the ambiguous labels with the true class of
the data.

Most of the work mentioned previously have dealt with
ambiguously labeled within a single dataset. Some more re-
cent research [6, 11, 16, 19] has been directed toward train-
ing a single model using multiple datasets for better learning
and generalization. [6] uses a generalized version of the bi-
nary cross-entropy loss where the loss is normalized by the
proportion of known labels rather than the total number of
classes. [16] trains a Convolutional Neural Network called
SMILE on multiple datasets, each of them corresponding
to one class. During training, binary cross entropy loss is
used to compute the loss for each class and the final loss is
the summation of these losses. [19] proposes a novel loss
function based on the Dice similarity coefficient to adap-
tively learn multi-organ information from heterogeneously
labeled computed tomography (CT) abdominal scans. [11]
uses a new loss function where during training, the model
does not apply softmax on labels that are not available in
a particular dataset but applies a sigmoid on the output of
CNN for those labels.

A third approach is to use multiple classifiers. [14] trains
multiple classifiers on the specific task of street scene se-
mantic segmentation. They define the semantic hierarchy
between the different datasets and train one classifier per
dataset. Therefore, the network is able to handle different
semantic level-of-detail and annotation types.

3. Formal description

Formally we define the problem as follows:
Let x ∈ X be an input where X is the set of all inputs. Let
Y = {y1, y2, ..., yk} be the set of all possible labels an input
x can take. In the partially labeled dataset, every datapoint
xi is associated with a set of candidate labels Si = {yi |
yi ∈ Y} and only one of these labels is the true label for the
datapoint xi. Thus the dataset consists of the pairs (xi, Si)
where xi ∈ X is the input and Si ⊆ Y is the set of labels
for the xi one of which is the true label and the algorithm
does not know which label within Si is the true label. Given
such a dataset, the task of learning from ambiguous label is
to learn a function, f : X −→ Y , such that f(xi) −→ yi
with a high probability, where yi is the true label for xi and
yi ∈ Si.
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Figure 2: Semantic label hierarchy for the 19 classes and 7 categories in the dataset

4. Loss functions
4.1. Cross-entropy

A common loss used for semantic segmentation, and
more generally for classification problems is the Cross-
Entropy loss (CE) given by

LCE = −
N∑
i=0

yi log(pi)

where N is the number of classes, yi is the target prob-
ability and pi is the probability output by the model. pi is
given by the softmax function defined as

pi =
eoi

N∑
j=0

eoj

where oi is the ith ouput of the model.
The simplest strategy to use the Cross-Entropy loss in the

context of partial labels is to mask out the pixels for which
the candidate set contains more than one label. One of the
pioneering work [10] proposed to use the Cross-Entropy
Loss and assume a uniform probability distribution among
the targets belonging to the set of candidates S. Throughout
this paper, we will refer to it as the Uniform Cross-Entropy
loss (UCE).

LUCE = − 1

|S|

N∑
i=0

log(pi)1yi∈S

Based on this work, [17] reused the same loss in the con-
text of deep Neural Networks. Even if this seems a natural
approach from a probabilistic viewpoint, assuming a uni-
form distribution of the unknown variable can lead to major

drawbacks. Starting from a perfect classifier, further train-
ing the model using the UCE loss on partial labels would
affect the performance of the classifier since it would in-
crease the entropy of the predictions inside the candidate
sets.

4.2. Binary Cross Entropy

The Binary Cross Entropy (BCE) loss is widely used in
the multilabel classification literature [6].

LBCE = −
N∑
i=0

yi log(pi) + (1− yi) log(1− pi)

It can also be used for partial labels. One advantage over
the Cross Entropy loss is that Binary Cross Entropy can be
used to explicitly lower the probabilities of incompatible
targets.

4.3. Minimum commitment

We propose to use the Minimum Commitment (MC) loss
defined as

LMC = − log(

N∑
i=0

pi1yi∈S)

Contrary to the Uniform Cross-Entropy loss, the mini-
mum commitment loss does not set any preferences among
the compatible labels. It only considers the sum of the out-
put probabilities belonging to the set of candidates. It can be
viewed as a Cross-Entropy loss where the set of candidate
labels is consider as a label itself.
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5. Model and training procedure

We used a model based on the FCN [18] architecture.
We used a ResNet-50 [8] as our backbone. We replaced
the stride 2 of the 3x3 convolutions in the block 5 with a
dilation 2. Our classifier is composed of 2 convolutional
layers with kernel 3x3 and dilation 6 following the Field-of-
View enlargement method used in DeepLab V2 [1]. Each of
them is followed by a batch normalization layer and a ReLU
activation function. Our classifier has a final convolutional
layer with kernel 1 for classification.

We randomly resized the input images with a scaling fac-
tor between 0.5 and 2. We took random crops of 769×769,
we randomly flipped the images horizontally and finally we
normalized the images with the mean and the standard devi-
ation of the Cityscapes dataset. When training on multiple
datasets, we concatenated the datasets and randomly sam-
pled training images from the result of the concatenation.

We trained the models with a batch size of 4, using Adam
optimizer with a learning rate of 0.0001 and a weight decay
of 0.0001.

6. Experiments

We performed two types of experiments. We first created
two toy experiments to validate the proposed loss against
other well-known losses. We then conducted a larger scale
experiment to compare our method to other methods for
partial labels.

6.1. Toy experiments

The two toy experiments are conducted on two differ-
ent sets of datasets created from Cityscapes. The goal of
conducting two experiments is to see the performance of
the loss function in two different scenarios. In the first sce-
nario, one label is always part of an ambiguous candidate
set, i.e. all the candidate sets where this label appears have
a cardinality of at least 2. In the second scenario, all the
labels appears in a non-ambiguous candidate set in at least
one dataset.

For the first toy experiment, we created 2 datasets con-
taining 50 images each. Three labels ”Construction”,
”Nature” and ”Flat” were created from merging original
Cityscapes labels. In the first dataset, the classes “Construc-
tion” and “Nature” were combined into a single label. In the
second dataset, the classes “Flat” and “Construction” were
combined to a single label. Therefore the class “Construc-
tion” is always part of an ambiguous set of labels. The vali-
dation set is composed of 100 images from Cityscapes with
the labels ”Construction”, ”Nature” and ”Flat”. The labels
present in each dataset are summarized in figure 3.

Figure 3: Training and validation dataset and classes for
toy experiment 1

For the second toy experiment, we created 2 new datasets
containing 50 images each. Four labels ”Construction”,
”Nature”, ”Flat” and ”objects” were created from merging
original Cityscapes labels. In the first dataset, the classes
”Nature” and ”Construction” are combined into a single
label. In the second dataset, the classes “Flat” and “Ob-
ject” are combined into a single label. The validation set
is composed of 100 images from Cityscapes with the labels
”Construction”, ”Nature”, ”Flat” and ”Objects”. The labels
present in each dataset are summarized in figure 4.

Figure 4: Training and validation dataset and classes for
toy experiment 2

6.2. Larger scale experiment

For the larger scale experiment we use the BDD100K
and Cityscapes datasets. Both datasets originally share the
same classes. To introduce ambiguity, we merged the 19
cityscapes labels into 7 categories as show in Figure 2. We
train the model using 300 images of BDD dataset with 19
classes and 1000 images of Cityscapes with 7 categories.
Training a model this way would account for the ambigu-
ity that may arise from training a single model on multiple
heterogeneously labeled datasets. The validation set is com-
posed of 500 images Cityscapes. The model is evaluated on
the original 19 Cityscapes’ labels.

We compare our model with a multitask model, a flat
classifier and the CE baseline where ambiguities are ig-
nored. For the multitask model, we used the same model
described in section 5. We ran experiments while includ-
ing 1, 2 and 3 layers in the classification head. We kept the
model that gave the best performance. We created two clas-
sification heads, one for each dataset. For the flat classifier,
we concatenated the labels and the categories. By doing so,
we obtained a classification problem with 26 classes. While
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(a) GT (b) CE (c) BCE (d) UCE (e) MC

Figure 5: Example of segmentation masks produced by the different losses for the toy experiment 1

(a) GT (b) CE (c) BCE (d) UCE (e) MC

Figure 6: Example of segmentation masks produced by the different losses for the toy experiment 2

running the validaiton, we ignored the categories classes
and perform the argmax over the labels only.

7. Results

7.1. Toy experiments

Figure 8 shows the results for the first toy experiment.
The proposed Minimum Commitment loss performs
significantly better than the three other losses. It achieves
a validation mean Intersection over Union (mIoU) 0.17
greater than the Uniform Cross Entropy loss and 0.29
greater than the CE and BCE baselines. The IoU and
accuracy are reported for every individual classes in Table
1 and Table 2. The minimum commitment loss achieves
better mIoU and better mAcc than the other losses. We also
notice that the Uniform Cross Entropy loss leads to a mIoU
curve with great volatility. This is caused by the incentive
for the network to have uniform output inside the sets of
candidates. The Cross-Entropy and Binary Cross-Entropy
losses achieve low mIoU and mAcc because of the Nature
class that always appears in sets of candidates that contain
at least 2 classes. Therefore, CE and BCE are never trained
on the Nature class. An example of the segmentation masks
produce by each loss can be seen in Figure 5

Figure 9 shows the results of the second toy experi-
ments. The proposed Minimum Commitment loss performs
slightly better than the three other lossses. The IoU and ac-
curacy are reported for every individual classes in Table 3
and Table 4. Since all the labels appear at least once in a
non-ambiguous set, the Cross-Entropy and Binary Cross-
Entropy losses perform significantly better than in the first
toy experiment. Moreover, both datasets are sample from
Cityscapes, i.e. the same distribution, which explains why
there is less benefit in taking advantage of ambiguities. An
example of the segmentation masks produce by each loss

can be seen in Figure 6
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Figure 8: Evolution of the val mIoUs during the training
for the toy experiment 1

Loss Flat Construction Nature mIoU
MC (ours) 0.9149 0.7307 0.6880 0.7779

UCE 0.7369 0.6280 0.4496 0.6048
CE 0.8866 0.5668 0.0000 0.4845

BCE 0.9014 0.5726 0.0000 0.4913

Table 1: Validation IoUs for the toy experiment 1
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(a) GT (b) CE (c) Flat classifier (d) Multi-task (e) MC (ours)

Figure 7: Example of segmentation masks produced by the different methods for the larger scale experiment

Loss Flat Construction Nature mAcc
MC (ours) 0.9613 0.8322 0.8244 0.8726

UCE 0.8106 0.7245 0.7299 0.7550
CE 0.9264 0.9693 0.0000 0.6319

BCE 0.9560 0.9560 0.0000 0.6373

Table 2: Validation accuracy for the toy experiment 1
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Figure 9: Evolution of the val mIoUs during the training
for the toy experiment 2

Loss Flat Constr. Nature Object mIoU
MC (ours) 0.745 0.603 0.724 0.4048 0.619

UCE 0.653 0.516 0.500 0.331 0.500
CE 0.883 0.414 0.6150 0.329 0.560

BCE 0.693 0.527 0.682 0.424 0.582

Table 3: Validation IoUs for the toy experiment 2

Loss Flat Constr. Nature Object mAcc
MC (ours) 0.932 0.831 0.847 0.627 0.809

UCE 0.816 0.751 0.569 0.777 0.743
CE 0.943 0.462 0.692 0.780 0.719

BCE 0.942 0.737 0.801 0.753 0.808

Table 4: Validation accuracy for the toy experiment 2

7.2. Larger scale experiment

The larger scale experiment results on fig 10 show
that our method achieves better results than the multitask
model, the flat classifier and the CE baseline. Our method
converges to a val mIoU of 0.26 outperforming the multi-
task setting by 0.06, the CE baseline by 0.10 and the flat
classifier by 0.13. The flat classifier is under performing
compared to the CE loss because of its incentive during
training to discriminate similar classes across the datasets.
It is also important to notice that our method requires less
parameters than the multitask and the flat classifier settings.
The mIoU being relatively low can be explained due to the
fact that we only used a fraction from both datasets, and
BDD100k and Cityscapes are quite different datasets; the
transfer from one dataset to the other can be more tricky
than what it seems. Firstly, images from BDD100k are
twice smaller than images from Cityscapes and we did not
apply any dataset specific pre-processing. Secondly, the
distribution of the two datasets is different. The Cityscapes
dataset only contain images from the cities and BDD
contain a much greater variety of locations. An example of
the segmentation masks produced by each methods can be
seen in Figure 7
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Figure 10: Evolution of the val mIoUs during the training
for the larger scale experiment
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8. Conclusion
In this paper, we considered the problem of combining

multiple heterogeneously labeled datasets. We proposed to
use the Minimum Commitment loss, and we showed that
our loss performs significantly better than other losses or
methods. In future work, one could study the performance
of the Minimum Commitment Loss applied to tasks other
than semantic segmentation.
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