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Abstract

We present an approach to estimating camera rotation
in crowded, real-world scenes from handheld monocular
video. While camera rotation estimation is a well-studied
problem, no previous methods exhibit both high accuracy
and acceptable speed in this setting. Because the setting
is not addressed well by other datasets, we provide a new
dataset and benchmark, with high-accuracy, rigorously ver-
ified ground truth, on 17 video sequences. Methods de-
veloped for wide baseline stereo (e.g., 5-point methods)
perform poorly on monocular video. On the other hand,
methods used in autonomous driving (e.g., SLAM) lever-
age specific sensor setups, specific motion models, or lo-
cal optimization strategies (lagging batch processing) and
do not generalize well to handheld video. Finally, for dy-
namic scenes, commonly used robustification techniques
like RANSAC require large numbers of iterations, and be-
come prohibitively slow. We introduce a novel generaliza-
tion of the Hough transform on SO(3) to efficiently and ro-
bustly find the camera rotation most compatible with op-
tical flow. Among comparably fast methods, ours reduces
error by almost 50% over the next best, and is more ac-
curate than any method, irrespective of speed. This repre-
sents a strong new performance point for crowded scenes,
an important setting for computer vision. The code and the
dataset are available at https://fabiendelattre.com/robust-
rotation-estimation.

1 Introduction
The estimation of camera motion through a scene is

a fundamental problem in computer vision that is highly
related to a number of vision tasks such as motion seg-
mentation [5], video stabilization [44], 3D reconstruc-
tion [9], visual odometry [56], Simultaneous Localisa-
tion and Mapping (SLAM) [53], Structure-from-Motion
(SfM) [65], human-computer interaction [54], autonomous
navigation [69], and many more. Hence, developing a
method that can accurately predict the camera’s movement

Figure 1. Left. A frame from our BUSS dataset of crowded
scenes. The red vectors show optical flows compatible with the
winning rotation estimate R∗, indicating the rotation of the cam-
era. Gray vectors show optical flows not explained purely by R∗.
Right. The three axes show the space of rotations in 3D. Each
line shows the one-dimensional set of rotations that are compati-
ble with a single optical flow vector. The red lines (correspond-
ing to the red flow vectors in the top figure) intersect in a single
small bin, indicating that their optical flows are compatible with
the same rotation. The gray lines, which are affected by other
motion effects, are scattered in an unstructured manner, and corre-
spond to the gray optical flows above. Our algorithm finds the set
of lines with greatest coherence in SO(3), revealing the rotation
R∗ of the camera.

through a scene is critical in solving these problems.
As the camera moves through the scene, the motion

field depends not only on the camera’s motion but also on
the scene’s geometry and objects’ motion in the environ-
ment. Given a sufficiently crowded location with many
moving objects (e.g., pedestrians and vehicles), estimating
the camera motion requires the difficult task of distinguish-
ing between static and moving objects. This paper pro-
poses a novel, robust method of estimating camera rotation
in crowded scenes such as the one shown in Fig. 1.

It is important to clarify the difference between frame-



to-frame camera motion estimation and relative pose esti-
mation. Specifically, camera motion estimation is a con-
strained version of relative pose estimation where only two
views are used, constrained to be (a) spatially close, (b) tem-
porally close, and (c) taken from the same camera, which
matches the case of adjacent frames in a moving-camera
video.

Nowadays, many authors focus on relative pose estima-
tion using point correspondences. Most of these methods
focus on estimating the essential matrix [45, 56], which
works best in the presence of large parallax [47, Remark
5.2] (large baselines). Therefore, correspondence-based
methods are primarily used for offline localization and map-
ping strategies such as SfM and 3D reconstruction, or on-
line pipelines with local optimization like SLAM. In con-
trast, optical flow-based methods are better suited for small
motions, which is the domain of interest in this paper.

As in state-of-the-art correspondence-based relative pose
problems [34], the best optical flow-based methods for
frame-to-frame camera motion estimation focus on decou-
pling the transformation into rotation- and translation-only
estimation [5,7]. While there are fast and accurate solutions
to motion estimation, they are highly sensitive to moving
objects in the scene–they frequently break down with signif-
icant numbers of moving objects in the scene. Similarly to
correspondence-based techniques, optical flow-based meth-
ods are often used within RANSAC [14] to handle locally
wrong optical flow and moving objects, and thereby in-
crease robustness. In this paper, we focus on rotation es-
timation since flow-based translation estimation given rota-
tion estimates can be easily computed as shown in [5, 7].

We propose a new method to estimate the camera rota-
tion based on optical flow. Our approach can be used for
highly dynamic scenes, from the assumption that optical
flow from faraway points is less sensitive to dynamic ob-
jects in the scene. The proposed technique uses a com-
patible rotation voting mechanism and does not require
RANSAC (see Fig. 1). In addition, since public datasets
only contain static scenes or have minor dynamic objects
(a large portion of the frames contain static environments),
we acquire a new and challenging dataset of 17 sequences
in (anonymized) crowded environments. The dataset will
be made available. To summarize, our contributions are as
follows:

– A novel robust frame-to-frame camera rotation estima-
tion algorithm based on optical flow that finds compat-
ible rotations using a voting mechanism based on the
Hough transform in the space of 3D rotations;

– We show that our algorithm significantly outperforms
the discrete and continual baselines in highly dynamic
scenes and performs comparably in static scenes; and

– We provide a new dataset of highly dynamic scenes

called BUsy Street Scenes (BUSS) that comes with
rigorously verified ground truth rotation.

2 Related work
Motion estimation methods can be classified into three

groups: differential methods, discrete methods, and direct
methods. Differential methods model the pixel displace-
ments between two frames as instantaneous 3D velocities,
while discrete methods model the pixel displacements as
3D translations and rotations. Direct methods typically
avoid defining displacements explicitly, and are based on
brightness-constancy constraints. Our method can be used
in either the differential or discrete paradigms.

Differential methods: These methods [62] (also known
as instantaneous-time [72] or continual methods) use vi-
sual motion field for estimating camera motion, and are
thereby well-suited for small motions. We start by re-
viewing methods based on the motion model proposed by
Longuet-Higgins and Prazdny [46].

In [7, 48], the authors formulate the problem to be in-
dependent of scene depth, and solve using nonlinear nu-
merical optimization using a weighted bilinear constraint.
Kanatani [29] shows that these methods introduce bias. To
remove the bias, Zhang and Tomasi [75] propose an itera-
tive method with an unweighted bilinear constraint that op-
timizes for translation using the Gauss-Newton method. To
avoid local minima of previous methods, Pauwels and Van
Hulle [58] start with the weighted bilinear constraint and
gradually move to the unweighted bilinear constraint. The
authors in [61, 63] leverage the fact that in areas of depth
discontinuities, the difference of flows is due to translation.
Inspired by this work, Heeger proposes multiple subspace
methods [19,20,25] that also solve for translation first. The
difference is that the solution is not an approximation and
the sampled flow vectors do not need to be close to each
other.

In [59], Perrone tunes flow vector location-specific de-
tectors to respond to different translation or rotation direc-
tions and speeds. He then adopts a voting scheme to deter-
mine the best-fitting rotation and translation. A drawback
is that this approach requires a huge number of templates to
cover the 5 continuous dimensions. In a subsequent work,
Perrone [60] proposes to first stabilize the gaze, reducing
the number of dimensions to optimize. Lappe [39] proposes
a biologically plausible implementation of [19].

Methods in [30, 51, 77] use a differential version of the
epipolar constraint. [30, 77] propose algorithms to linearly
solve for the continual fundamental matrix.

Discrete methods: These methods do not make assump-
tions about frame-to-frame displacements, e.g., [4, 31, 43,
50, 73]. The literature is vast. We list a few key works.

Most discrete methods use the epipolar constraint, [12,



24, 45, 47], and can be split into two groups: calibrated and
uncalibrated ones. In both, most authors focus on deriving
minimal solvers for RANSAC. In the calibrated case, the
essential matrix can be estimated using 5-point correspon-
dences (see [3, 18, 38, 42, 52, 55]). Some authors proposed
other minimal solvers for improving speed1: [28] derives
6- and 7-point solvers, and a DLT method (8-point algo-
rithm) is presented in [47]. [41] uses SE(3) invariances for
constraining the minimal solvers. Others were proposed
for constrained motions, such as [40, 64]. For the uncali-
brated cases, again many authors proposed different solvers.
In [17], the author proposes an 8-point algorithm. [37, 70]
propose minimal 6-point algorithms for solving the relative
pose with an unknown common focal length. [11] explores
the use of IMU for deriving a 4-point algorithm. In [36], the
authors study problems with radial distortion.

Some authors focused on offering non-minimal solvers
for fine estimates, such as [6, 10, 76]. In [34, 35], the au-
thors propose a new epipolar constraint based on the copla-
narity of epipolar plane normal vectors. [8] avoids possible
local minima by using an estimate of an unsupervised pose
network. In [15], the authors use a robust loss function to
detect and discard outliers.

Direct methods: Instead of explicitly computing the op-
tical flow, direct methods solve for camera motion us-
ing the brightness-consistency constraint equation (e.g.,
[13,21,67,68,74]). Despite spatial-temporal gradient infor-
mation, no closed-form solution exists, and strong assump-
tions must be made to simplify the problem. Horn and Wel-
don proposed several algorithms for cases of pure rotation,
pure translation, or when depth is known [22]. Some works
have shown that even when there exist rotation and trans-
lation, a solution can be found by considering the world
as planer [1, 22, 26], or by enforcing chirality constraint
(the depth remains positive) [2, 57]. Direct methods suffer
from changes of illumination, and they become extremely
slow when run using a robust estimator framework to han-
dle moving objects.

Robust motion estimation: To handle moving objects and
noise in the (dense or sparse) correspondences, motion es-
timation methods are usually run within robust estimators.
Bideau et al. [5] develops a loss function to evaluate the
quality of camera rotations with respect to optical flows,
and perform gradient descent of this function in SO(3).
Unfortunately, local minima of the loss can be caused by
similarity of rotation flows to translation and moving object
flows, leading to poor solutions. To avoid this, one may
do exhaustive search, such as in [59], by discretizing rota-
tion space into Crot 3D bins, and evaluate every rotation in

1The 5-point solver estimates up to 10 solutions for each sampling hy-
pothesis, requiring up to 10 inlier counting per hypothesis. Non-minimal
solvers get a single solution per hypothesis.

time O(Crot). In general, large bins yield poor accuracy
and smaller bins are too computationally expensive. Intu-
itively, this approach wastes large amounts of computation
on very poor rotation candidates. RANSAC [14] takes a
different approach in which a random sample of flow vec-
tors are evaluated for consistency with a particular motion
model. This method works well when there are few outliers.
However, with large numbers of outliers, such as in crowded
street scenes, the required number of RANSAC iterations
becomes too large, yielding very slow algorithms (see run
time results for RANSAC algorithms). Thus, RANSAC is
not viable when the percentage of outlier pixels is large. To
tackle those challenges, we propose a generalization of the
Hough Transform on SO(3) that we describe in Sec. 3.2.

3 Proposed approach
Our goal is to estimate the camera rotation between two

frames, given {ui, vi, xi, yi} where (ui, vi) are optical flow
vectors and (xi, yi) are their respective coordinates in the
image plane. Consider an optical flow field F caused purely
by camera rotation, with no camera translation, moving ob-
jects, or noise. As we discuss in Sec. 3.1, each flow vector
in such a rotation field provides two constraints on the set
of possible rotations, as shown in Fig. 1. For a purely rota-
tional optical flow field, the lines intersect in a single point,
the rotation that causes the optical flow.

However, in real-world video, optical flow is also af-
fected by translation, moving objects and noise. In general,
there exists no single rotation compatible with all the opti-
cal flow vectors. To estimate the rotation, we leverage the
fact that the flows of distant points are mostly affected by
rotation and thus behave approximately like ’rotation-only’
flow vectors. The hypothesis is that these distant points will
provide consistent evidence for a particular rotation, while
other flow vectors, influenced by translation, scene geom-
etry, moving objects, and noise, will not produce a consis-
tent estimate of rotation. Thus, by accumulating evidence
(or votes) for the rotation with strongest support, we can
estimate the camera rotation.

Of course, this highlights an important assumption of
our method: we assume that camera translations between
frames are small relative to distant points in the scene.
This ensures that the flows of distant scene points are well-
modeled by rotations. Thus, our method is designed to work
in outdoor scenes (or spacious indoor scenes, like arenas)
where the translational camera motions are small relative to
the most distant objects.

Our method can be considered a variation of the well-
known Hough transform [23]. The Hough transform at-
tempts to find the hidden variable that could have generated
as many observations as possible. Each observation is used
to “vote” for the hidden variable values with which it is con-
sistent. In our case, the observations are optical flow vectors



Figure 2. Retrieving the set of rotations mapping P to Q. The
set of all rotations that map P to Q (a one-dimensional subman-
ifold of SO(3)) can be obtained by composing RP→Q, a single
rotation, with RQ, the set of all rotations about the vector Q.

(at each point in the image), and the hidden variable values
are the possible rotations. This approach can be considered
a “robustification” method, since it allows us to get good es-
timates in the presence of large numbers of “outliers”, i.e.,
flows influenced by other factors (translation, moving ob-
jects, poor optical flow estimates).
The rest of this section is as follows: We review the per-
spective projection motion model and the Longuet-Higgins
motion model in Sec. 3.1.1 and Sec. 3.1.2, and we derive the
set of compatible rotations using both models; In Sec. 3.2,
we introduce our Hough transform based voting scheme
and compare the computational efficiency of our method to
other robust methods.

3.1 Compatible rotations

In this section, we discuss how to find the set of rota-
tions that can produce a specific optical flow vector that is
only affected by camera rotation. Given that the space of
3D rotations SO(3) is a 3D manifold (rotations about the 3
axes) and that optical flow vectors have two degrees of free-
dom (u and v), there is a one-dimensional set of rotations
with which any flow vector is compatible. We present two
versions of our method, a discrete version using perspec-
tive projection, and a continual version using the Longuet-
Higgins motion model.

3.1.1 The perspective projection motion model

In this section we review classical materials on perspective
projection, and we show how to compute the set of rotations
that can produce a particular flow vector under perspective
projection. Consider a camera, aligned with world coor-
dinates, that images a point with world coordinates P and
image coordinates p. Now consider a rotation of the cam-
era so that the world point in the new camera frame is given
by camera coordinates Q and image location q. Because the
magnitude of P and Q are the same (rotations do not change
vector magnitudes), and the magnitudes of P and Q do not
affect their projections onto the image, we can assume they

Figure 3. Longuet-Higgins vs. perspective projection. Each
flow vector is compatible with a 1D manifold of rotations (axes
in radians). Here, we show (partial) sets of compatible rotations
using the Longuet-Higgins model (straight red lines) and (par-
tial) sets of compatible rotations using perspective projection (blue
curves.) Our algorithm can be used with either motion model.

both have unit magnitude.
The set of all rotations that map P to Q (a one-

dimensional submanifold of SO(3)) can be obtained by
composing RP→Q, a single rotation about P × Q, with
Rθ

Q, a rotation about the vector Q by an angle θ that does
not change the position of Q in the camera’s frame. This
can be done for any angle θ, generating a one-dimensional
manifold of rotations (see Fig. 2) that can be written as

R(P,Q) = {R : R = Rθ
QRP→Q, 0 ≤ θ < 2π}.

Given a set of rotations that can map P to Q, we next
discuss how to find rotations that map p to q in an image
(i.e., the rotations that are compatible with optical flow vec-
tor q−p). First, to get P and Q, we take the inverse images
of p and q (assuming that P and Q are unit vectors). The
set of rotations compatible with the flow vector q − p is
therefore R(P,Q). To compute this from P and Q we de-
fine RP→Q, which consists of an axis of rotation P × Q,
and the angle of rotation given by arccos(P · Q). For Rθ

Q,
the axis of rotation is simply Q, and the angle of rotation is
any θ such that 0 ≤ θ < 2π. This one-dimensional fam-
ily of rotations R(P,Q) is a curve in SO(3) (blue curves
in Fig. 3). Next, we show how the Longuet-Higgins model
yields a slightly different set of compatible rotations.

3.1.2 Using Longuet-Higgins motion model

The Longuet-Higgins visual motion field model for static
scenes [46] defines an instantaneous motion field velocity
(rate of change of position in the image) as

v =

(
A
f xy −Bf − B

f x
2 + Cy

Af + A
f y

2 − B
f xy − Cx

)
︸ ︷︷ ︸

vr

+

(−fU+xW
Z

−fV+yW
Z

)
︸ ︷︷ ︸

vt

. (1)



The motion field velocity v is represented as a sum of the
2D rotational velocity vr and the 2D translational veloc-
ity vt. These in turn are defined as functions of the 3D
translational velocities U, V,W , the 3D rotational velocities
A,B,C, the depth Z, the image positions x, y and the focal
length f . For motion caused only by rotation, we have, for
a specific image location (x, y),

v(x, y) =

A
(

xy
f

)
−B

(
f2+x2

f

)
+ Cy

A
(

f2+y2

f

)
−B

(
xy
f

)
− Cx

 . (2)

These equations lead to a 1D manifold of solutions, a line
l at the intersection of two planes defined by the two equa-
tions in Eq. 2. The simple form of this 1D manifold (a
straight line) allows a very fast implementation of the
Hough transform, as described in Sec. 3.2.

Let nu and nv be normal vectors to these planes:

nu =

[
xy

f
,−f2 + x2

f
, y

]
, nv =

[
f2 + y2

f
,−xy

f
,−x

]
.

(3)
The line l defined by the intersection of the two planes has
direction d = nu ×nv. By simple algebra, it can be shown
that the z component of d can’t be 0, which implies that the
line l can’t be co-planar to the plane C = 0. Therefore, we
can complete the definition of l by finding its intersection
with the plane C = 0, by setting C = 0 in Eq. 2. Notice
that the direction of l (given by the vector d) is independent
of the optical flow vector. Only the intercept depends on the
flow vector. Therefore, one can precompute line directions
for each image location, and only find the intercept at run
time, resulting in major efficiency gains. Figure 3 shows the
1D manifolds of compatible rotations produced by perspec-
tive projection and the Longuet-Higgins motion model. A
comparison of the accuracy and the run time of the two ap-
proaches can be found in Sec. 6. In the subsequent sections
of the paper, we will report results of our method using the
Longuet-Higgins motion model.

3.2 Voting Scheme

We discretize the 1D manifold of solutions we get from
Sec. 3.1 into rotation votes. Unlike the original Hough
transform, we do not create an accumulator, but make a
list of compatible rotation votes, and find the mode of the
list, alleviating the need for a 3-dimensional accumulator in
memory. In summary, our approach allows dense sampling
of SO(3) while maintaining rapid execution. Our method’s
speed depends on the number of flow vectors COF used in
voting and the number of points sampled per 1D manifold
of compatible rotations. We sample about 3

√
Crot points per

1D manifold, the approximate number of bins intersected
by each line. Thus, our total number of ‘votes’ and hence
our complexity is O(COF

3
√
Crot).

Figure 4. BUSS dataset. Example frames from our BUSS dataset.
The sequences are recorded in different scenes and have a diverse
set of camera motion.

Table 1. Dataset comparison. Comparison of our proposed
BUSS dataset to other relevant datasets.

BUSS
(ours) IRSTV [66] Cambridge

Landmarks [32] KITTI [16]

Year 2022 2021 2016 2012
Platform Hand held Hand held Hand held Car
Scene Outdoors In/outdoors Outdoors Outdoors
% of moving objects Very high Very low Low Very low
Anno. freq. 30Hz 20Hz 2Hz 10Hz
Rot. GT IMU IMU SfM IMU
Baseline Small Small Large Large
Num. frames 5,504 7,800 10,929 43,552

4 Dataset
We introduce BUsy Street Scenes (BUSS), a challeng-

ing dataset of video sequences taken from a handheld mo-
bile phone (an OPPO A5 2020 smartphone, rear camera)
in crowded city streets with synchronized inertial measure-
ment unit (IMU) data. The goal of the dataset is to evaluate
the robustness of camera rotation estimation algorithms in
dense and dynamic scenes with many moving objects and
complex camera motion. The dataset composes 17 video se-
quences of about 10 seconds each at 30fps in full HD resolu-
tion (1920x1080) RGB. We used the Android Open-Camera
Sensor app to synchronously record video and angular rate
from the phone’s MEMS gyroscopes (at 400Hz) and then
generated the rotation ground truth using the method we
discuss in Sec. 4.1. To meet strict privacy standards, videos
are only captured in public places, and faces and other per-
sonally identifiable information (PII) is blurred. Along with
the anonymized video frames, we also provide optical flow
for all sequences computed with RAFT [71]. All sequences
show highly dynamic scenes (see Fig. 4).

4.1 Ground truth calculation

The BUSS ground truth was estimated using the angular
rate measurements recorded simultaneously with the video.
The ground truth rotation at frame ft represents the for-



ward rotation from the video frame ft to the immediate next
frame ft+1. To get the rotation between two frames, we nu-
merically integrate angular rate measurements [49].

To assess the reliability of our dataset’s rotational ground
truth, we compared the measurements of the OPPO with the
measurements of a different phone (iPhone 12 mini) with
the phones bound to the same rigid surface. Comparing
two gyroscope sensor models gives us strong confidence
in data correctness since it is highly unlikely that the two
phones (with different hardware) agree on erroneous mea-
surements. After recording gyroscope data simultaneously
from both phones, we corrected for temporal and spatial
misalignment. We synchronized the internal clocks of the
two phones by finding the time offset that minimized dis-
agreement error. For spatial misalignment, we corrected for
the relative orientation R between the two gyroscopes using
the Kabsch algorithm on the rotation velocity vectors [27].
The average frame-to-frame (at 30 fps) rotation error be-
tween the two phones is 0.014◦. This is an order of mag-
nitude smaller than the errors from state-of-the-art methods
in a similar setting. This validates the choice of using a
gyroscope to generate the ground truth of the dataset. See
additional details in supplementary material.

4.2 Comparison to existing datasets

Our proposed BUSS dataset has three key properties
that are not found simultaneously in any publicly avail-
able dataset: (a) it is recorded with a handheld camera,
introducing highly variable camera motions (b) it contains
highly dynamic scenes, and (c) it has high frequency, ac-
curate and synchronized rotation ground truth. The IRSTV
dataset [66] does not have property (b) because the number
of moving objects is sparse. The Cambridge Landmarks
dataset [32] contains some sequences with dynamic scenes,
but the ground truth rotations are only given at 2 FPS. The
popular KITTI dataset [16] has few moving vehicles and
pedestrians per frame and the camera is mounted on a vehi-
cle, so the dataset is lacking all three properties. The com-
parison of the main characteristics of our dataset with three
other publicly available datasets can be found in Tab. 1.

5 Experiment

We evaluate our method for frame-to-frame rotation esti-
mation on our proposed BUSS dataset and on IRSTV [66].
The properties of both datasets are described in Sec. 4.2.

5.1 Evaluation Metrics

To evaluate the rotation estimation accuracy, we use Av-
erage Angular Error (AAE) which computes the angle of ro-
tation between the ground-truth rotation and estimated rota-
tion. Let fi,j be the jth frame in the ith sequence. Let Ri,j

be the ground-truth rotation between frame fi,j and frame

fi,j+1, and R̂i,j be the estimated rotation between the same
two frames. Then, the average angular error is given by

AAE =
1∑N

i=1 Mi

N∑
i=1

Mi∑
j=1

θ(R̂i,jR
−1
i,j ), (4)

where N is the number of sequences, Mi is the number of
optical flows for the sequence i and θ(·) is the magnitude of
rotation resulting from R̂i,jR

−1
i,j .

5.2 Implementation Details

All methods, including ours, are run on an Intel Xeon
CPU. For the continual baselines, we used the MATLAB
implementations and the RANSAC parameters provided
in [62]. For the discrete baselines, we used the implemen-
tations and the RANSAC parameters from OpenGV [33].
To offer a fair run time comparison against other continual
baselines, our method is also implemented in MATLAB.
We use a bin size of 0.057 degrees (see the ablation in
Sec. 6), and we search over rotations between -4 and 4 de-
grees.

For the methods that require the optical flow, including
ours, we first resize the video frames to a size of 480x270.
We then compute the optical flow using RAFT [71] on a
GeForce GTX 1080Ti GPU. RAFT offers a good trade-off
between performance and speed. We then resized the opti-
cal flow to 32x18 by sampling the optical flow vectors on a
regular grid with stride 15. An ablation on the spatial sam-
pling rate can be found in Sec. 6.

For the methods based on feature correspondences,
we extract 3000 SIFT descriptors from the full-resolution
1920x1080 video frames. We match them using a standard
brute-force matcher.

5.3 Results

We compare the frame-to-frame rotation estima-
tion from our Longuet-Higgins method against sev-
eral continual baselines: Bruss&Horn (B&H) [7],
Heeger&Jepson (H&J) [20], Kanatani (Kan) [30],
Lappe&Rauschecker (L&R) [39], Pauwels&Van Hulle
(P&V) [58], Zhang&Tomasi (Z&T) [75], and discrete
baselines: Kneip (Kne) [34] and Nistér also known as the
5-points algorithm (Nis) [55]. In addition of running the
continual methods using all the optical flow vectors, we also
run all continual methods, except Lappe&Rauschecker [39]
and ours which are robust to moving objects by design,
in RANSAC for 1, 25, 100 and 500 RANSAC iterations.
For the discrete baselines, we ran each method for 500,
5000 and 50000 iterations. To quantify the amount of
rotation in both datasets, we also include the zero baseline
as reference.

Results on BUSS: The results on the BUSS dataset clearly
illustrate the strength of our approach. Table 2 reports the



numerical results, and Fig. 5 shows the rotation error vs. run
time. Our method is almost 50% more accurate than com-
parably fast methods. Due to the highly dynamic nature
of the BUSS dataset, RANSAC significantly improves the
accuracy of the other methods (ranging from 66% to 30%
improvement). Yet, even with the improvement gained from
RANSAC, our method outperforms the second-best method
by 25% while being more than 400 times faster. The stan-
dard error of the mean is smaller than 1.3% for our method,
and smaller than 7% for the other methods.

Rotation err. (°) Time per frame (seconds)

Continual methods
# iters. N/A 1 25 100 500 N/A 1 25 100 500
B&H [7] 0.21 0.28 0.17 —∗ —∗ 0.14 9.92 226.01 —∗ —∗

H&J [20] 0.25 0.40 0.21 0.18 0.16 0.13 0.26 3.30 10.72 62.09
Kan [30] 0.28 0.60 0.24 0.21 0.20 0.12 0.23 2.86 8.37 37.54
L&R [39] 0.30 — — — — 13.07 — — — —
P&V [58] 0.22 0.30 0.22 0.21 0.21 0.12 0.61 5.62 13.27 38.76
Z&T [75] 0.22 0.30 0.22 0.21 0.21 0.13 0.51 4.93 11.82 36.50
Ours 0.12 — — — — 0.14 — — — —

Discrete methods
# iters. 500 5K 50K 500 5K 50K
Kneip [34] 0.69 0.36 0.33 1.63 3.00 6.04
Nistér [55] 0.43 0.34 0.33 1.86 3.26 10.91

Table 2. Quantitative results on the BUSS dataset. We compare
the frame-to-frame rotation error and the run time of our method
with multiple other baselines for multiple number of RANSAC
iterations. Experiments where the number of iterations is ”N/A”
means that the experiments have been run without RANSAC.
∗The run time is too long to run the experiment.

Figure 5. Rotation error vs. run time on BUSS. Methods
run with RANSAC appear on a line, with different numbers of
RANSAC iterations at each point. Standalone points do not use
RANSAC. The run time of the continual methods includes the run
time of the optical flow computation.

Results on IRSTV: The results for the IRSTV dataset are

reported in Tab. 3. We show the plot of the rotation error
vs. run time in Fig. 6. Our method is on par with the other
methods with respect to accuracy and speed. Our method
has a rotation error of 0.14° while operating at 0.15 seconds
per frame. Due to the fact that IRSTV is mostly composed
of static scenes, running continual methods with RANSAC
only marginally improve the results while increasing the run
time significantly.

Rotation err. (°) Time per frame (seconds)

Continual methods
# iters. N/A 1 25 100 500 N/A 1 25 100 500
B&H [7] 0.12 0.19 0.13 —∗ —∗ 0.15 9.15 238.45 —∗ —∗

H&J [20] 0.15 0.40 0.18 0.14 0.12 0.13 0.26 3.28 11.09 59.64
Kan [30] 0.15 0.34 0.14 0.13 0.12 0.12 0.22 2.32 10.11 43.04
L&R [39] 0.14 — — — — 12.78 — — — —
P&V [58] 0.15 0.20 0.15 0.14 0.14 0.12 0.51 5.48 17.09 76.47
Z&T [75] 0.15 0.20 0.15 0.14 0.14 0.12 0.51 5.36 17.95 78.69
Ours 0.14 — — — — 0.15 — — — —

Discrete methods
# iters. 500 5K 50K 500 5K 50K
Kne [34] 0.28 0.27 0.26 1.64 2.57 4.82
Nis [55] 0.33 0.30 0.30 1.56 2.02 2.77

Table 3. Quantitative results on IRSTV dataset. We compare
the frame-to-frame rotation error and the run time of our method
with multiple other baselines for multiple number of RANSAC
iterations. Experiments where the number of iterations is ”N/A”
means that the experiments have been run without RANSAC.
∗The run time is too long to run the experiment.

Figure 6. Rotation error vs. run time on IRSTV. Methods con-
nect by lines use RANSAC. Standalone points do not.

The results on IRSTV and BUSS show the robustness
of our method to moving objects. While the rotation er-
ror of our proposed algorithm stays comparable across the
two datasets, the rotation errors of the baselines increase on
the BUSS dataset. It’s worth noting that continual meth-
ods perform significantly better than the discrete methods



on both datasets, which suggests that discrete methods are
more susceptible to noise. Additionally, the Zero baseline
error is more significant (≈ 0.8°) on the IRSTV dataset than
on the BUSS dataset (≈ 0.5°) due to IRSTV having a lower
frame rate. This also explains why our method performs
slightly worse on IRSTV than on BUSS.

5.4 Robustness to moving and close objects

In this section, we investigate the proportion of pixels
in the frames needed to be far away. In the case of pure
rotation, the winning rotation bin receives votes from all
flow vectors. Fig. 7 shows the percentage of flow vectors in
the winning bin for the BUSS dataset. 62% of the optical
flows have less than 25% of the flow vectors in the winning
bin, with the majority resulting in small errors (<0.2deg).
This shows that our algorithm is highly effective even when
most of the flow vectors are affected by a translation or by
moving objects.

Figure 7. Percentage of flow vectors that has voted for the winning
rotation bin on the BUSS dataset. E.g., the dotted line shows that
for 62% of the optical flows, less than 25% of the flow vectors are
in the winning bin.

6 Ablation Studies
We compare motion models (perspective vs. Longuet-

Higgins), different quantizations of rotation space, and the
spatial sampling rates of optical flow.

Varying bin sizes on SO(3): Fig. 8 compares rotation
error and run time for our two approaches on BUSS. Both
methods demonstrate similar rotation accuracy regardless of
bin size. However Longuet-Higgins is much faster for small
bins. There is a sweet spot for bin size. If bins are too small,
noise in optical flow prevents the 1d manifold of compatible
rotations from intersecting the correct bin. But making bins
bigger increases error when picking the correct bin. Since
the rotation estimate is the bin’s center, the maximum error
when choosing the correct bin is

(√
3/2
)
s, for bin size s.

Robustness to spatial sampling: We sample optical flow
vectors along a regular grid. Fig. 9 shows our model’s ro-
bustness to spatial sampling step sizes on BUSS. The ro-

Figure 8. Performance on BUSS as a function of bin size. Our
method’s accuracy (continuous line) and run time (dashed line)
with perspective projection and Longuet-Higgins. The methods
have similar accuracy but Longuet-Higgins is much faster.

Figure 9. Performance on BUSS as a function of spatial step
size. Our error (continuous line) and run time (dashed line) for
different spatial step values. A spatial step value of n means that
we sample flow vectors every n pixels.

tation error remains between 0.11 degrees and 0.13 degrees
for step sizes ranging from 1 to 80. This allows subsampling
optical flow and reducing run time. When flow sampling be-
comes too sparse, rotation error increases due to overexpo-
sure to potentially noisy flow vectors. Surprisingly, rotation
error also slightly increases when flow sampling becomes
too dense. We hypothesize that this is because far away
points are spatially distributed on the frames, while objects,
that could potentially exhibit motions that are coherent to
a rotation, are generally well-bounded in space. Therefore,
after diminishing the sampling rate, we still benefit from far
away points across the frame, while reducing flows sampled
from the same object.



7 Conclusion
We introduce a novel generalization of the Hough trans-

form on SO(3) to find the camera rotation most compatible
with optical flow in highly dynamic scenes. Our method is
inherently robust, and doesn’t need RANSAC, which signif-
icantly improves the speed over existing methods. In pres-
ence of moving objects, our method reduces the error by al-
most 50% over the next best method for the same run time,
while performing similarly in static scenes. Additionally,
we propose a challenging new dataset BUSS that consists
of 17 video sequences in crowded, real-world scenes.
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